Hardness of Set Cover with

نویسندگان

  • V.S.Anil Kumar
  • Sunil Arya
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Positive-Negative Partial Set Cover problem

The Positive-Negative Partial Set Cover problem is introduced and its complexity, especially the hardness-of-approximation, is studied. The problem generalizes the Set Cover problem, and it naturally arises in certain data mining applications.

متن کامل

Interactive Submodular Set Cover

We introduce a natural generalization of submodular set cover and exact active learning with a finite hypothesis class (query learning). We call this new problem interactive submodular set cover. Applications include advertising in social networks with hidden information. We give an approximation guarantee for a novel greedy algorithm and give a hardness of approximation result which matches up...

متن کامل

Hardness of Facility Location Problems

1.2 Hardness of k-median Theorem 1. It is hard to approximate k-median within 1+ 2 e1/c for any c < 1. This theorem is equivalent to the 1− 1/e− hardness shown in [2] and follows from a standard reduction from set cover. The main idea is to take an approximation algorithm for k-median, and use it to obtain a partial set cover. Then repeat this process, again partially covering the remaining ite...

متن کامل

2 Maximum Coverage 2.1 Problem Definition

In the previous lecture we covered polynomial time reductions and approximation algorithms for vertex cover and set cover problems. By reductions we showed that SAT, 3SAT, Independent Set, Vertex Cover, Integer Programming, and Clique problems are NP-Hard. In this lecture we will continue to cover approximation algorithms for maximum coverage and metric TSP problems. We will also cover Strong N...

متن کامل

Exact algorithms and APX-hardness results for geometric packing and covering problems

We study several geometric set cover and set packing problems involving configurations of points and geometric objects in Euclidean space. We show that it is APX-hard to compute a minimum cover of a set of points in the plane by a family of axis-aligned fat rectangles, even when each rectangle is an ǫ-perturbed copy of a single unit square. We extend this result to several other classes of obje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006